SIMON FRASER UNIVERSITY

SFU

ENGAGING THE WORLD

Overview

distribution built from reusable, modular components

Contributions

complex scene generation. Specifically, we:

- reusable, composable, interpretable modules
- compositions

Probabilistic Neural Programmed Networks for Scene Generation

Zhiwei Deng, Jiacheng Chen, Yifang Fu, Greg Mori

Simon Fraser University

tions	
x	scene image
у	semantics
Z	scene latent
$p(\boldsymbol{x} \mid \boldsymbol{y})$	data likelihood
$(z \mid y, x)$	true posterior
$q(\mathbf{z} \mid \mathbf{x})$	variational distribution
$p(\mathbf{z} \mid \mathbf{y})$	learnable prior
$\mathcal{P}(\tau, \mathbf{y})$	compositional generation process

scene latent	
data likelihood	
true posterior distribution riational distribution	
learnable prior	

Experiments

Performance Measure

- Detector score for measuring semantic correctness: **mAP** of Faster-RCNN object detector
- **Objectness**: whether the number of objects are consistent with semantics?
- Object type: whether the objects in generated images have correct type (shape)?
- **Object-attribute**: whether the objects in generated images have correct visual attributes?

cyan

yellow -

green

red

Color-MNIST

Method	OBJ-N	OBJ-T	OBJ-A
GT	0.999	0.999	0.999
DC-GAN	0.990	0.211	0.146
PixelCNN	0.921	0.474	0.318
PoE-VAE	0.913	0.136	0.051
Ours	0.981	0.419	0.363

CLEVR-G(64x64)

Method	OBJ-N	OBJ-T	OBJ-A
GT	0.999	0.998	0.976
DC-GAN	0.979	0.566	0.176
PixelCNN	0.894	0.444	0.074
PoE-VAE	0.974	0.493	0.134
Ours	0.971	0.833	0.737

Sphere

Cube

Cylinder

The test set contains combinations of objects, attributes and relations that are not present in training set

Method	OBJ-N	OBJ-T	OBJ-A
DC-GAN	0.989	0.418	0.332
PixelCNN	0.899	0.420	0.192
PoE-VAE	0.975	0.441	0.318
Ours	0.970	0.752	0.734

CLEVR-G(128x128): More complex scenes

more complex cases

_____ Setting Ours Ours

More Details

Please check our project page on Github for more details about model implementation and data.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018)

Illustration of Visual Concepts

Experiments: Generalizability

CLEVR-G(64x64): Zero-shot setting

We can train the model on simpler scenes, but test it on

s(trained on)	OBJ-N	OBJ-T	OBJ-A
GT(-)	0.979	0.977	0.943
s (up-to-8)	0.973	0.734	0.567
s (up-to-4)	0.976	0.715	0.518

