
Policy Message Passing: Modeling Trajectories for
Probabilistic Graph Inference

Zhiwei Deng 1 Xingguo Li 1 Greg Mori 2

Abstract
Learning to perform flexible reasoning over mul-
tiple variables is of fundamental importance for
various tasks in machine learning. Graph neural
network is an effective framework for building
inference processes among variables. A power-
ful graph-structured neural network architecture
should operate on graphs through two core com-
ponents: (1) complex message functions designed
to model relations between nodes; (2) a flexi-
ble information aggregation process that executes
the reasoning through passing messages. How-
ever, despite the efforts on message designs, exist-
ing graph neural networks have limited power of
systematically modeling flexible reasoning over
graphs. In this paper, we propose the Policy
Message Passing (PMP) algorithm, which takes
a probabilistic perspective and reformulates the
whole information aggregation as stochastic se-
quential processes. PMP is built upon the Varia-
tional Inference framework and defines a set of
automatic agents that observe the states and his-
tory to perform actions over the graphs. Theo-
retical interpretations are provided to show that
our algorithm can achieve improved optimization
efficiency, as well as a more effective learning
process. Experiments show that our algorithm
outperforms baselines by up to 40% on complex
reasoning tasks with parameters reduced up to
80% and is more robust to noisy edges on large
scale graphs.

1. Introduction
The world is constructed through complex schemes and pro-
cesses involving interactions between elements and objects.
Being able to build models that can perform reasoning based

1Princeton University 2Borealis AI. Correspondence to: Zhiwei
Deng <zhiweid@cs.princeton.edu>.

Main part of the paper was done when Zhiwei Deng was interning
at Borealis AI
Copyright 2020 by the author(s).

on observations through establishing connections among el-
ements and passing information, and make conclusions that
can be generalized to new instances, has been a coveted
guerdon of machine learning research. To perform such flex-
ible reasoning among entities or variables, graph-structured
models have been one of the default options to resort to (Sha
& Pereira, 2003; Lafferty et al., 2001; Taskar et al., 2004).
Graph Neural Networks (GNNs) emerged in recent years
as the most popular deep learning models for processing
relational data (Li et al., 2015; Deng et al., 2016), learning
representation in graphs (You et al., 2019; Xu et al., 2018)
and performing complex reasoning based on observations
(Teney et al., 2017; Palm et al., 2018; Santoro et al., 2017).

Existing Graph neural networks encompass two key com-
ponents: (1) message functions Fθ which captures the rela-
tions and interactions among nodes; (2) a fixed information
aggregation process τ that passes information around the
graph through message functions. Given input features x
and targets y, the model maximizes a general objective as
follows with two components working cooperatively:

max
θ

p(y|x;Fθ, τ). (1)

Copious works are developed towards building powerful
message functions. Linear weight matrices are used for
semi-supervised node classification in (Kipf & Welling,
2016). More complex non-linear message functions are
adopted for high-dimensional relational reasoning (Santoro
et al., 2017; Gilmer et al., 2017). To modulate information
flows in GNNs, gated functions (Li et al., 2015; Deng et al.,
2016) and attention schemes (Veličković et al., 2017) are
applied to yield more flexible models. However, building
an algorithm that systematically discusses and models the
information aggregation process τ has been under-explored.

In our paper, we propose a novel algorithm, termed Policy
Message Passing (PMP) that generalizes existing GNNs by
representing the inference process as a learnable compo-
nent modeled by a neural network πφ. Instead of relying
on a repetitive and fixed aggregation procedure, our algo-
rithm tackles the high-dimensional search space induced
by all possible passing combinations across the sequential
procedure, and perform inference in an active “reasoning”
manner. Our algorithm treats the embeddings in graphs as

Modeling Trajectories for Probabilistic Graph Inference

states, actively queries information, and performs reasoning
actions. Starting from an initial graph states s0, the algo-
rithm builds towards a distribution-based perspective that
considers all possible reasoning process and learns to gener-
ate more effective samples, resulting in a new objective to
be optimized:

max
φ,θ

Eτ∼πφ

[
p(y|s0,x, τ ;Fθ)

]
. (2)

More specifically, compared with Eqn. (1), we introduce
a neural network πφ in Eqn. (2) with additional flexibil-
ity to represent the distribution over all possible inference
trajectories in GNNs.

By taking the distribution perspective of message passing
and reformulating the whole information aggregation pro-
cess as stochastic sequential processes, our model is em-
powered with abilities to capture more aspects of the graph-
structure reasoning problem: (i) Distribution nature - the
possible inference trajectories in graph goes beyond sim-
ple synchronous aggregation, and reside in a vast space
with various possibilities, where each of them can lead to a
different result; (ii) Consistent inference - reasoning steps
between nodes and across steps are not isolated, maintaining
the memory of reasoning history over time could lead to
more effective and consistent inference, or possible message
function compositions; (iii) Uncertainty - inference itself
encodes a prior knowledge on how to perform certain tasks,
representing the inference from a distributional perspective
maintains the uncertainty of the results of tasks.

Our primary contribution includes: (I) We reformulate the
whole inference aggregation from the Bayesian perspective
and introduce an algorithm that conducts function-set based
message passing with history-aware reasoning over graphs;
(II) We propose a Variational Inference based framework
for learning the inference models, and provide theoretical
interpretation of our model’s superiority from perspectives
of coding theory and optimization; (III) We explore multi-
ple designs of our model and empirically demonstrate that
having a powerful inference machine can enhance the pre-
diction in graph-structured models while achieving better
parameter efficiency, on complex reasoning tasks and large
scale graphs with noisy edges.

2. Preliminaries: Graph Neural Networks
We start with introducing some notations. Let G =
{V, E ,X} denotes a graph with local features X = {xi},
where V = {v1,v2, ...,v|V|},vi ∈ Rd is the set of node
states, E ∈ E is the graph structure given a priori and each
node state vi is associated with a local feature xi. We use
Y = {yi} to denote the output set.

A large volume of Graph Neural Network (GNN) models,
which map the input features X to the desired output Y

through a sequence of local message passing on node states
V , have been developed for varied applications and tasks
(Defferrard et al., 2016; Li et al., 2015; Kipf & Welling,
2016; Henaff et al., 2015; Duvenaud et al., 2015). These
methods share two common structures: propagation net-
works and output networks. In our paper, without loss of
generality, we follow a standard method that propagates
local messages between every pair of nodes.

Propagation networks: Assume that a graph state s0 =(
{vi0}

)
is initialized from corresponding local node features.

The propagation network, composed of a fundamental unit
termed as “graph-to-graph” module, consecutively generates
a sequence of graph states (s0, s1, ..., sT), t ∈ {0, 1, ..., T},
where each states corresponds to updated node embeddings.
At each timestep t, the “graph-to-graph” module takes the
current states st and performs message passing locally be-
tween node pairs. The functions that generate messages are
implemented as neural networks. The process is executed
in the following order:

m
(i,j)
t = fk(i,j)

(
vit,v

j
t

)
; vit+1 = g

(∑
j∈Ni

m
(i,j)
t ,vit,v

i
0

)
,

where fk(i,j)(·, ·) : R2d → Rd is the message function and
k(i, j) : N2

0 → N0 is the function index determined by
indices of node pairs. Function g(·) : R3d → Rd is the
aggregator function that collects messages back to node vec-
tors. Ni represents the neighbours of node i in the graph.
The whole aggregation process is fixed and defined as syn-
chronous processes in existing GNNs.

Output networks: The output network of the model maps
the information in the graph states to the target output
through function fo : V → Y . The mapping function is gen-
erally represented by a neural network. Note that the target
variable y ∈ Y can take various forms, such as node-level
labels, graph-level labels or even sentences, depending on
the tasks. Without the loss of generality, we use node-level
labels in our following sections.

Limitations: The standard GNN described above repre-
sents a constrained class of models that focus on designing
expressive functions capturing interactions between nodes,
but ignore the modeling of the execution processes of pass-
ing messages, which is crucial in controlling and editing the
node vector values. This prevents the model from being a
more general class of approaches, which learn to actively
reason over graph states through modeling both function
designs and the aggregation process. Potential benefits of
this class of model include performing edge discovery or
removal dynamically, making compositional usage of mes-
sage functions across reasoning steps, or learning the order
of solving problems (Chen et al., 2018).

Modeling Trajectories for Probabilistic Graph Inference

𝑣"#

𝑣"$

𝑣"%

𝑣"&

𝒛"
(),#) 𝑚"

(),#)

0 ↦ 1

4 ↦ 3

𝑣")

Message set

𝒛"
(&,%) 𝑚"

(&,%)

𝑣".##

𝑣".#$

𝑣".#%

𝑣".#&

𝑣".#)
𝒛"
(#,)) 𝑚"

(#,))

𝒛"
(#,$) 𝑚"

(#,$)

𝒛"
(%,$) 𝑚"

(%,$)

… …

Node states
Actions

ℎ"

Agent
ℎ".#

Agent

Feature-based messages:

Universal messages 0𝑚1:

𝑣".##

𝑣".#)

MLP

Blank message:

Global agent:

Local agent:

𝑣".#
|3|

𝑣".#)

… ℎ"4
Agent

ℎ"5#4

𝑣".##

𝑣".#)

ℎ"
(),#)

ℎ"5#
(),#)

: Attention based aggregation

: Concatenation
Message set

… …

Node states
Messages

Agent

Figure 1. PMP algorithm. Our PMP algorithm consists of two components jointly trained under VI framework: (1) Function-set message
passing based on actions proposed by agents; (2) an agent that propose and executes the actions on the message function sets. Left: two
possible designs of messages. Right: two possible designs for agents. Middle: one step reasoning over the graph.

3. Our Approach: Policy Message Passing
In this section, we describe our proposed Policy Message
Passing algorithm, under the same problem setup. Given the
graph defined as G = {V, E ,X} and the graph initial states
s0, we build our algorithm to model the full information
aggregation process (referred to as reasoning process), to
generate desired output Y . In the following, we first discuss
the general algorithm framework, then describe our model
designs and show how our proposed model broadens the
class of standard GNNs. We also theoretically show the
benefits of building a more expressive reasoning process.

Framework We formulate our algorithm from a Bayesian
perspective, and treat the reasoning process as a latent vari-
able τ . The reasoning process is defined to be a sequence
of actions τ = (a0,a1, ...,aT), where T is the number of
reasoning steps and at is the action defined over the whole
graph. As the message passing operation is defined locally
between pairs of nodes, denoted as z(i,j)t ∈ Z , the graph-
level action can then be defined by the collection of local
operations at = {z(i,j)t }. As a consequence, if consider z
as a dicrete variable with Z denoting the set of possible val-
ues, the search space for the model is |Z|T |V |2 , where |V |
is the number of nodes. Besides the large search space, the
information passing process also has a distribution nature:
there are multiple possibilities of transmitting information
and manipulating node contents.

To model the distribution over the full reasoning process τ ,
we define three key components: (1) the set of message func-
tions F (i,j)

θ = {fk(·, ·;θk)}(i,j) used for passing between
each pair of nodes i and j; (2) a reasoning agent πφ(·;φ),
parameterized by φ, which determines the reasoning pro-
cesses through message function selections; (3) a Variational
Information framework which performs inference and learn-
ing of the reasoning processes. Although we are able to
specify varied function sets based on node indices (i, j), we

adopt a shared function set Fθ = {fk(·, ·;θk)} across all
node pair (i, j) for simplicity. Detailed discussions for each
component is provided in the following sections.

3.1. Function set-based message passing

Standard Graph Neural Networks typically assign a unique
message function fk(·, ·) to each node pairs, where the k
is the index of function type. The message function needs
to account for node states and generate a message as an
output from node i to j. To build a powerful and flexible
reasoning process, we instead define a message function
set {fk(·, ·;θk)} to accommodate multiple possibilities be-
tween node pairs. The definition of message functions can
be either driven by the prior knowledge (e.g. potential
semantic relations between nodes), or separate random-
initialized neural networks where message types emerge
during learning process. In the following, we present two
designs of message function set Fθ = {fk(·, ·;θk)}.

Feature-based messages Similar to standard GNNs,
feature-based messages are derived from node features or
states through a direct function mapping fk(vit,v

j
t ;θk).

The function takes in node states at time t, and produce
a message m(i,j)

t,k = fk(vit,v
j
t ;θk). The produced mes-

sage m(i,j)
t,k is feature aware and could vary due to subtle

changes in node states. θk is the parameters for function k.
In our model, the function is represented by a Multi-Layer
Perceptron (MLP).

Universal messages To build models that can execute the
passing message operations to control node content, it might
be beneficial to learn a set of universal messages, which
can unload the modeling from typical non-linear functions
to the agent. Inspired by the concept of Vector Quantisa-
tion technique used in distribution approximation (van den
Oord et al., 2017; Louizos et al., 2017), we use a set of
“universal” message vectors {m̄k} that represent possible

Modeling Trajectories for Probabilistic Graph Inference

prototypes of information. The prototypical messages are
later selected and transformed linearly (scale and shift):
m

(i,j)
t,k = α

(i,j)
t,k m̄

k + β
(i,j)
t,k , in which the selection, scale

and shift coefficients are actions generated by the reasoning
agents. The message function k of Fθ = {fk(·, ·;θk)} and
corresponding learnable parameters, in this case, can be
expressed as fk(i, j; θk = m̄k) = I · m̄k.

Set-based message passing In both cases, we have a set
of functions Fθ = {fk(·, ·;θk)}, k ∈ {1, ...,K} defined
between each pair of nodes i and j. Note that in general
the sets assigned for edges can vary or be manually speci-
fied. Given the message function set between node i and j,
model’s reasoning agents choose to perform an action z(i,j)t

over the elements in the set. The final message m(i,j)
t at

time t passed from node i to node j is derived under the
operation defined as: m(i,j)

t = z
(i,j)
t

(
Fθ
)
, where z(i,j)t (·)

is the function defined by the action, e.g. indicator func-
tion based selection or linear transformation. We define the
action to be a vector of operations [z

(i,j)
t,0 , z

(i,j)
t,1 , ...,z

(i,j)
t,K]

on each message function type, the final messages between
node i and j are derived by: m(i,j)

t =
∑K
k=1 z

(i,j)
t,k

(
m

(i,j)
t,k

)
.

For example, for feature-based messages, the action is a se-
lection operation, while for universal messages, an extra
linear transformation should also be applied. For time step
t, the full update of the node states will be:

vit+1 = g
(∑
j∈Ni

K∑
k=1

z
(i,j)
t,k

(
fk(·, ·;θk)

)
,vit,v

i
0

)
,

where g(·) is a parameterized aggregation function that up-
dates the node state by messages, previous node states and
initial states. fk(·, ·;θk) is the k-th function that generates
the message m(i,j)

t,k at each step t according to the inputs
from node i and j. Ni is the set of neighbors of node i
in the graph. Note that we also define an “null” function
f0(·, ·) = 0 as 0-th function for all sets to allow for the
choice of removing connectivity between nodes.

3.2. Execution Agents

Starting from the initial states s0, an effective information
aggregation process will execute the local message pass-
ing operations to iteratively edit, transform and control the
graph states, leading to a states sequence (s0, s1, ..., sT).
The graph states st should be informative about target Y and
induce an easy mapping for the output networks (described
later) fo : V → Y . We define the graph states at each time
step t to be the collection of node states and message states
st = {vit}. To derive such a sequence of states, we build
an agent that models the whole reasoning process between
all pairs of nodes across the T steps. The agent tries to
learn a general inductive bias of performing operations, se-
lecting order and composing actions across reasoning steps.

We define the agent to be π(τ ;φ) = π(τ |s0, s1, ..., sT ;φ),
where τ = (a0,a1, ...,aT) is the sequence of actions that
the agent takes. The distribution over action trajectory
τ can be further decomposed as

∏T
t=0 q(at|s≤t), where

q(at|s≤t) is per-step action distributions. In the following,
we discuss two designs to show how the agents can collect
information from the graph and propose actions.

Global agent A global reasoning agent collects information
from the whole graph. Specifically, it has access to all node
states {vit} at step t. We use a variant of recurrent neural
network (RNN), namely the Gated Recurrent Unit (GRU)
(Chung et al., 2014), to maintain the hidden memory over
reasoning history. Denoting the hidden state at time t as ht,
the agent first use a one-hop soft attention (Bahdanau et al.,
2014; Deng et al., 2016) to check all the node state vectors,
based on its hidden memory state hGt . The attention weight
cit is calculated by cit = exp(c̄it)/

∑
j exp(c̄jt), where c̄it =

(Whch
G
t)T (Wvcv

i
t). The attended node information is used

for updating hidden memory:

hGt = GRUG

(∑
i c
i
tv
i
t,h

G
t−1
)
.

Action distributions are modeled and generated through an
Action head network. Note that action at is the set of all
local actions for message between each pair of nodes. The
distribution q(z(i,j)t |vit,v

j
t ,h

G
t) over local action z(i,j)t are

parameterized through the output of an Multi-Layer Percep-
tron: MLP

(
vit,v

j
t ,h

G
t

)
, which could generate probability

values for Categorical distributions, or mean and variance
of Gaussian distributions.

Local agent The local agent-based modeling instead builds
a pool of agents, in which each of them accounts for the
operation of a single pair of nodes. Similar to the global
agent setting, every local agent uses a GRU to maintain
the memory hidden state based on the local state dynamics
of the corresponding node pair. All agents share the same
learnable parameters to generalize across different graph
sizes. The memory hidden states are updated as follows:

h
(i,j)
t = GRUL

(
vit,v

j
t ,h

(i,j)
t−1
)
.

Based on the hidden states, at every step t, the agent
proposes an action distribution q(z

(i,j)
t |h(i,j)

t). The suf-
ficient statistic of the action distribution is generated from
MLP

(
h
(i,j)
t

)
.

Action head and differentiable sampling: The action dis-
tribution q(at|s≤t) at each step is defined over all the local
actions at = {z(i,j)t }. We use a factorized distribution
q(a

(i,j)
t |s≤t) =

∏
i,j q(z

(i,j)
t |s≤t), where each of them

is derived from either the global agent or the local agent.
Given the distributions q(z(i,j)t |s≤t), we can now use them
to perform operations by sampling actions from these dis-
tributions. In our algorithm, we define the action z accord-
ing to the choice of message function set: (1) for standard

Modeling Trajectories for Probabilistic Graph Inference

feature-based message functions, we use the Categorical
distribution to represent the probabilities of selecting each
type of functions; (2) for universal messages, where the
action operation is the combination of function type, co-
efficient scale and shift, we factorize q(z(i,j)t |s≤t) as the
product of Categorical distribution over function types, and
two Gaussian distributions over scalar coefficients α and β.
For Gaussian distributions, we use reparameterization trick
(Kingma & Welling, 2013) for backpropagating the gradi-
ents. For Categorical distribution, although the sampling
process of actions is straightforward, differentiating through
the sampling requires reparameterization tricks on discrete
variables. In our implementation, the Gumbel softmax trick
(Jang et al., 2016) is used for differentiable sampling:

z̃
(i,j)
t,k =

exp((log(z
(i,j)
t,k) + εk)/λ)∑K

m=1 exp((log(z
(i,j)
t,m) + εm)/λ)

,

where zijt,k is the probability value for each category, εk is
sample drawn from the Gumbel(0,1) distribution and λ is
the temperature parameter of softmax. As λ approaches 0,
the distribution over z̃ijt converges to a Categorical distribu-
tion with one-hot encoding, leading to the discrete action
selections for agents at each timestep. The sampled actions
are used to perform set-based message passing and update
node state st according to Sec. 3.1.

Output networks Similar to standard GNNs, we use an
output network to map the graph states v to the target output
variable y through fo : V → Y . As proposed in (Kipf et al.,
2018; Palm et al., 2018; Wei et al., 2016), mapping from the
graph states st to the target variable at every step instead
of final step helps to solve the gradient vanishing issue and
improve the performance. We have similar observations
in our experiments and follow the same setup for training.
Formally, our log-likelihood term to be optimized is:

log p(y|x, τ) =
∑
t

log p(yt|s≤t, τ).

The output network is realized by an MLP with learnable
parameters. For example, in the node classification setting,
the MLP generates the logits of Multinomial distibutions.

3.3. Learning objective

Given the node features x, the target variable y, the graph
structure E, and the agents π(τ |s,φ), we formulate the
model under the Variational Inference framework (Kingma
& Welling, 2013): we would like to infer and approximate
the distribution as close to the true posterior distribution
p(τ |x,y) over the reasoning process τ as possible. We
use the parameterized agent π to represent a variational
distribution family and minimize the KL Divergence be-
tween π and the true posterior: p(τ |x,y). Note that the

variational distribution π(τ |s,φ) doesn’t have access to the
ground truth variable y, which enforce it to learn the gen-
eral inductive bias of reasoning over graph only based on
the input feature and graph states. By re-writing the term
KL

(
π(τ |s)||p(τ |x,y)

)
, we derive the following equa-

tions:

log p(y|x)−KL
(
π(τ |s)||p(τ |x,y)

)
= Eτ∼π

[
log p(y|τ , s)

]
−KL

(
π(τ |s)||p(τ)

)
= Eτ∼π

[
log p(y|τ , s)

]
−KL

(∏
t

q(at|s≤t)||
∏
t

p(at)
)
.

In the above equation, the prior distribution over reasoning
process τ can be derived from the graph structure or manu-
ally specified. The decomposed KL term between q(at|s≤t)
and p(at) are approximated by Monte Carlo sampling as
the reasoning process progresses. Since KL Divergence is
non-negative, the right hand side of the equation is known
as Evidence Loader Bound (ELBO). During training, for
every graph data point (x,y,E), we initialize the graph
states as s0 from x, use the agent to sample actions from
produced the action distributions, execute the action through
the set-based message passing, and map the graph states to
the target y through the output network to maximize the
likelihood. The proposed action distribution is regularized
by the prior distribution induced from graph structure E.

4. Discussions and Theoretical insight of PMP
In this section, we show that our PMP algorithm generalizes
the existing GNNs by modeling the information aggregation
process as a stochastic reasoning process. The resulting
PMP based GNNs can potentially lead to a more effective
decoding process and more efficient optimization.

4.1. Coding theory perspective

It is well-known that, from an information-theoretic view,
there is a close connection between Variational Inference,
Bits-Back Coding (Hinton & Van Camp, 1993; Honkela &
Valpola, 2004), and Minimum Description Length (MDL)
(Rissanen, 1978). In the following, we show that the advan-
tage of our algorithm can be interpreted from the perspective
of coding theory.

Let x be the node features for a graph, y be node-level
labels, and τ be the inference/aggregation trajectories of
graph neural networks. As τ is not observed, we treat it as
a latent variable to be inferred using Variational Inference
framework. Assume that we have an encoder q(τ |x,φ), a
standard Variational Inference framework optimizes (mini-

Modeling Trajectories for Probabilistic Graph Inference

mize) the following quantity:

−E(x,y)∼data

[
Eτ∼q(τ |x;φ)

[
log p(y|x, τ ;θ) (3)

+ log p(τ)− log q(τ |x;φ)
]]

(4)

From the coding perspective, if we view the above equation
as a coding process, the coding cost contains two parts: C =
Crec + Ccoding to be optimzied, where Crec corresponds
to likelihood term log p(y|x, τ ;θ) in (3) and Ccoding is the
coding cost with “Bits-Back” part subtracted in (4). Note
that during testing, we only care about the first part of the
coding.

We use q(τ ;φ) to represent a general encoder. The recon-
struction coding cost Crec could be re-written as:

Crec =− E(x,y)∼data

[
log p(y|x;θ)

]
− E(x,y)∼data

[
Eτ∼q(τ ;φ)

[
(p(τ |x,y,θ)− log p(τ))

]]
,

where p(τ |x,y,θ) and p(y|x;θ) are posterior distribution
over τ and likelihood term under parameters θ. If we set
q(·) as the optimal distribution which is the true posterior
distribution under θ, then we have

C1
rec =− E(x,y)∼data

[
log p(y|x;θ)

]
− E(x,y)∼data

[
KL(p(τ |x,y,θ)||p(τ))

]
.

Instead, if we set q(·;φ) as the prior distribution over τ (i.e.,
we don’t provide any encoding information from τ side),
then we have

C2
rec =− E(x,y)∼data

[
log p(y|x;θ)

]
+ E(x,y)∼data

[
KL(p(τ)|p(τ |x,y,θ))

]
.

This implies C1
rec ≤ C2

rec, where the equality holds when
the posterior distribution p(τ |x,y) equals the prior distri-
bution p(τ), which means the best aggregation process τ is
to assume nothing (this can sometimes appear in too simple
tasks/applications). In harder cases where GNN is trying to
tackle a highly complex task, we can see that if the distribu-
tion is close to the true posterior, it can always help to get a
shorter length of coding over the reconstruction term. This
is exactly what variational inference is optimizing, which
minimizes the distance between a distribution q(τ |x;θ) and
the true posterior distribution p(τ |x,y;φ).

4.2. Optimization perspective

If we treat the parameters from q(τ |x,y,θ) and
p(y|x, τ ;φ) as two distinct sets of parameters, then θ con-
trols the generation of reasoning process, while φ controls
the likelihood model. We demonstrate that: (1) through

considering actions (i.e., indicator functions in GNNs), we
have a stronger learning model; (2) if one set of parame-
ters is more sensitive, it’s computationally more efficient to
directly optimize on them.

For the optimization problem, we consider fixing the param-
eter space for θ ∈ Θ when maximizing the likelihood:

L(θ,φ) = Eτ∼q(τ |x,y,φ)
[
p(y|x, τ ,θ)

]
On the other hand, when the parameter spaces for φ are
inclusive, i.e. Ψ1 ⊂ Ψ2, then we have

max
φ∈Ψ1,θ∈Θ

L(θ,φ) ≤ max
φ∈Ψ2,θ∈Θ

L(θ,φ).

Here Ψ1 corresponds to the existing GNNs and Ψ2 corre-
sponds to our PMP based GNNs. This guarantees that our
learning procedure can result in a lower risk due to the more
expressive modeling capability.

From the perspective of parameter sensitivities, we can also
achieve that a significantly smaller number of parameters
are required in optimization. This is because the parameters
in q(τ |x,y,φ) and p(y|x, τ ;θ) have different sensitivities
to the final model performance. If we don’t have a flexible
q(·) to be learned, the burden of reconstruction all falls onto
the first term p(·), which is modeled by the GNN architec-
ture. When we slightly increase the number of parameters
in the sensitive parameter set (q(·) here), we may signifi-
cantly reduce the number of parameters for the less sensitive
parameter set (p(·) here). This can significantly reduce the
computation complexity for tuning parameters. We empir-
ically show that by adding the q(·;φ) distribution, we can
reduce the overall number of parameters by > 80% and
maintain, even increase, the performance.

4.3. Compare with GNN variants

Existing GNN variants provide two remedies to the basic
GNN architecture: (1) the first class of models use gates
or attentions to control the information during propagation
(Veličković et al., 2017; Li et al., 2015; Deng et al., 2016).
Note that these methods, although inspiring, are still con-
strained to non-probabilistic, single-step operations, which
don’t consider the full search space of the sequential pro-
cess and lack systematic interpretations. (2) Several GNN
variants also take a Bayesian perspective (Kipf et al., 2018;
Zhang et al., 2019; Ng et al., 2018). In NRI (Kipf et al.,
2018), an encoder is used to approximate the posterior distri-
bution over graph structures, the sample of which still leads
to fixed inference processes. (Zhang et al., 2019) focuses
on distribution over graph convolution weights, while (Ng
et al., 2018) uses Gaussian Process to model data points
correlations. Both are orthogonal to our approach and could
potentially benefit from our algorithm.

Modeling Trajectories for Probabilistic Graph Inference

Reassembly

Position: (2, 2)

Figure 2. Illustration of the image puzzle reassembly task. An
image is first split into patches which are then shuffled. A fully-
connected graph is built to connect all patches. Given the position
of one patch, the task requires model to infer positions for the rest.

5. Experiments
We test our proposed model on two tasks with different
modalities of data: the complex visual reasoning task and
the node classification on citation network benchmarks. Vi-
sual data resides in a high-dimensional space, leading to
rich and diverse interactions when organized in graphs. Cita-
tion network data has fewer dimensions per node, but larger
scales on the size of graphs.

5.1. Visual Reasoning — Image Puzzle Reassembly

Image puzzle reassembly is a classic problem that requires
understanding complex patterns or pattern combinations
in images, linking possible pairs of tiles, correcting errors
and iteratively solving the puzzle. The images are firstly
segmented into tiles with shuffled orders, see fig. 2. The
task is to reassemble the tiles into original full images with
correct positions and orders.

5.1.1. DATASETS AND EXPERIMENTAL SETUP

Datasets We generate image puzzles from two large-scale
benchmark database: (1) Visual Genome (Krishna et al.,
2017) - The Visual Genome (VG) database is known for
images with complex object layouts or interactions, and is
standard benchmark data for scene graph generation task. It
contains 64346 images for training and 43903 images for
testing. (2) COCO (Lin et al., 2014) - We use the COCO
dataset (2014 version) that contains 82783 images for train-
ing and 40504 images for testing. COCO is also standard
dataset used for “recognition in context” and contains di-
verse objects and semantic information.

Task setup To generate a d× d puzzle from an image with
sizeH×W , we divide the image into d×d non-overlapping
patches. Each patch has size H/d×W/d. The d2 patches
are then shuffled into a set with size d2. In our experiments,
we first resize the images into 256× 256 before generating
puzzles. Three puzzle reassembly tasks are set up: 3 ×
3, 4 × 4, and 6 × 6, leading to graphs with size 9, 16 and
36 respectively. See figure 2 for illustration. The inference

model will be given patch features and the position for
one patch, and classify the rest. We use ResNet-18 (He
et al., 2016) as our base network architecture for extracting
features. The base network is jointly trained from scratch.

Models Accuracy(%) ↑ / Kendall-tau ↑
2x2 3x3 4x4 5x5

(Mena et al., 2018) 1.0 / 1.0 .97 / .96 .9 / .88 .79 / .78
PMPL - Feature 1.0 / 1.0 1.0 / 1.0 .99 / .99 .99 / .99

Table 1. We compare our model’s performance with state-of-the-
art deep learning based puzzle reassembly model on Celeba
dataset.

5.1.2. BASELINES AND IMPLEMENTATION DETAILS

We compare our model with four powerful graph-structured
models as baselines: (1) Graph Neural Network (GNN)
— we use the GNN described in Sec.2 as our basic base-
line model to compare with. This GNN corresponds to our
model without the PMP components and uses a determinis-
tic informagion aggregation process. Models with similar
architectures are widely used in other applications (Gilmer
et al., 2017; Xu et al., 2017). (2) Attention-based Graph
Neural Network (Veličković et al., 2017; Wang et al., 2018)
— the attention-based GNN can be viewed as a special case
of our model, with single step soft message selections. (3)
Recurrent Relational Network (RRN) (Palm et al., 2018) —
RRN is a GNN model that performs long-term reasoning
via maintaining hidden memory on the node states. (4) Neu-
ral Relational Inference model (NRI) (Kipf et al., 2018) —
the NRI model is the closest one to our model. It aims at
inferring the graph structure from the data and is formulated
under the Variational Inferece framework. However, the ag-
gregation process is still fixed based on sampled structures.

Implementation details We randomly sample 30% images
from training set as validation set and search hyperparame-
ters. Numbers reported in tables are for test set. For node di-
mension, we found 200 can achieve maximum performance
for baselines, while only 50 dims are needed for our PMP
models. Number of functions is set to 4 for GNN-Attention,
NRI and PMPL/G-Feature and 32 for PMPL/G-Universal.
We use d + 2 inference steps for all models, where d is
square root of graph size. Learning rate is set to 5e−4. Mod-
els are trained for 60 epochs. More architecture details and
number of parameters per model can be found in Appendix.

5.1.3. EXPERIMENTAL RESULTS

Results for image puzzle reassembly on two benchmark
datasets are summarized in Table 2. Performance are mea-
sured by per node (patch) classification accuracy and cor-
relation score Kendall-tau. We find that our PMP-based
models can achieve > 90% on classification accuracy, and
outperform the GNN without PMP by up to 40%. Local
agent PMP overall performs better than global agent ones,

Modeling Trajectories for Probabilistic Graph Inference

Models Visual Genome COCO
Accuracy(%) ↑ Kendall-tau ↑ Accuracy(%) ↑ Kendall-tau ↑

3x3 4x4 6x6 3x3 4x4 6x6 3x3 4x4 6x6 3x3 4x4 6x6
random 11.11 6.25 2.78 - - - 11.11 6.25 2.78 - - -
GNN 88.76 76.18 56.11 90.32 82.56 75.07 90.46 79.94 40.50 91.47 84.75 68.18

GNN-attention 90.96 82.05 72.25 92.12 86.75 84.66 93.75 82.77 79.36 93.55 86.75 84.66
RRN 90.83 83.03 62.66 92.48 89.51 82.01 91.51 81.26 48.88 92.76 86.24 73.92
NRI 92.31 82.21 59.90 93.00 86.78 78.15 93.91 82.25 55.51 94.73 86.97 75.49

PMPG - Feature 93.31 89.18 84.10 94.95 93.91 89.77 96.82 88.52 80.82 96.56 93.50 90.18
PMPG - Universal 94.26 88.62 78.23 95.28 93.56 85.84 94.11 89.16 80.16 95.44 93.19 89.29
PMPL - Feature 94.40 96.55 91.40 94.44 97.22 95.33 96.68 97.05 91.06 96.65 97.69 94.59

PMPL - Universal 95.31 94.55 96.88 96.01 96.64 98.27 96.01 94.84 93.23 96.90 95.99 95.81

Table 2. Performance results on Visual Genome and COCO datasets, measured by per-patch classification accuracy and correlation score
Kendall-tau. PMPL and PMPG correspond to local agent version and global agent version respectively. “Feature” represents feature-based
message set passing and “Universal” represents universal message set passing. Our model achieve up to 40% improvement over baselines.

indicating that memorizing actions and history for the whole
graph is harder than factorizing the modeling into local ones.
Actually local agent PMP has higher parameter efficiency
too. We observe that universal messages can achieve simi-
lar (or higher) results compared to feature-based messages,
showing that the agent is capable of learning a set of feature-
agnostic and task-specific messages to perform reasoning.

Message function analysis Number of message functions
(NMF) is highly correlated to the expressive power and flex-
ibility of PMP models. With higher NMF, the PMP model.
We find that, with feature-based message functions, the
model achieves state-of-the-art through four different func-
tion types. For PMP with universal messages, the algorithm
needs more “prototypical” vectors (32 in the experiments) to
cover possible component in the message space. We also ob-
serve that universal message based models have more stable
training process. This is potentially due to that the message
set is disentangled from high-dimensional image features
and is less sensitive to perturbations. We also find that mes-
sage function composition appears across the consecutive
operations. For example, we measure the composition rate
of two function types through #freq(kt=i,kt+1=j)

(#freq(k=i)+#freq(k=j)) and
find the metric ranges from 0.0522 to 0.1804, indicating the
usage of compound messages for reasoning.

Models Noisy edges
50% 100% 200%

GCN 26.55 ± 1.3 23.53 ± 1.44 22.62 ± 1.84
GAT 58.83 ± 1.35 45.82 ± 2.55 34.53 ± 0.45

PMPL-F 65.37 ± 1.36 61.42 ± 1.31 50.3 ± 1.13

Table 3. The performance of node classification for Cora dataset
under varied noisy edge settings. The experiment follows the
standard transductive setup in (Yang et al., 2016).

Parameter efficiency Through modeling the reasoning pro-
cess τ , we find that PMP largely reduces the burden on
GNNs. Specifically, a basic GNN requires 321,0809 param-
eters, through modeling the reasoning process with an extra

6,6592 parameters using PMP, the number of parameters
for GNN can be reduced by 5 times smaller to 54,7709,
resulting in a model with 18.44% of original model size.

Compare with state-of-the-art method: We compared our
method with state-of-the-art deep learning based method for
image puzzle assembly task on CelebA dataset. The results
are shown in Table 1. Our model shows near perfect puzzle
reassembly results across four settings.

5.2. Node classification with noisy edges

We further inspect on models’ ability on handling noisy
edges on large scale graphs. Current graph neural network
benchmark datasets on citation networks, such as Cora (Sen
et al., 2008), heavily rely on well caliberated edge matrix
as a strong prior information for inference. The burden
on aggregation process are lessened, compared to more
general cases where adjacency matrix information are of-
ten noisy or missing. In this experiment, we compare our
feature-based PMP with local agents to two state-of-the-
art graph-structured models: (1) Graph Convolutional Net-
works (GCN) and (2) Graph Attention Networks (GAT)
on a standard citation network benchmark Cora. Instead
of using only the well designed adjacency matrix infor-
mation, we generate perturbation to the matrix by adding
{%50,%100,%200} ∗ |E| more noisy edges to test the ro-
bustness of algorithms w.r.t. edge noises, |E| is the number
of edges in the original graph. For implementation, we use
the official release of the codes on two baseline models and
default settings. In our PMP model, we follow the same
hyper-parameters in baselines and uses recurrent network
agent with 32 hidden dimensions. Results summarized in
table 3 show that our model is more robust to noisy edges in
performing inference over large scale graphs. Note that as
we are building local agents for each pair of nodes, general-
izing to even larger scale graphs will lead to high memory
costs. Sampling-based methods could potentially help to
solve this problem. We leave it as future work.

Modeling Trajectories for Probabilistic Graph Inference

6. Conclusion
We propose PMP and formulate the reasonings over graphs
as learnable processes under Variational Inference frame-
work. We show that our algorithm consistently outperforms
baseline GNN variants while maintaining high parameter
efficiency.

References
Bahdanau, D., Cho, K., and Bengio, Y. Neural machine

translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

Chen, S.-F., Chen, Y.-C., Yeh, C.-K., and Wang, Y.-C. F.
Order-free rnn with visual attention for multi-label classi-
fication. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. Empirical
evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555, 2014.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Advances in Neural Information
Processing Systems, pp. 3844–3852, 2016.

Deng, Z., Vahdat, A., Hu, H., and Mori, G. Structure infer-
ence machines: Recurrent neural networks for analyzing
relations in group activity recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4772–4781, 2016.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell,
R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P. Con-
volutional networks on graphs for learning molecular fin-
gerprints. In Advances in neural information processing
systems, pp. 2224–2232, 2015.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pp. 1263–1272. JMLR.
org, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Henaff, M., Bruna, J., and LeCun, Y. Deep convolu-
tional networks on graph-structured data. arXiv preprint
arXiv:1506.05163, 2015.

Hinton, G. E. and Van Camp, D. Keeping the neural net-
works simple by minimizing the description length of the
weights. In Proceedings of the sixth annual conference
on Computational learning theory, pp. 5–13, 1993.

Honkela, A. and Valpola, H. Variational learning and bits-
back coding: an information-theoretic view to bayesian
learning. IEEE transactions on Neural Networks, 15(4):
800–810, 2004.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel,
R. Neural relational inference for interacting systems.
arXiv preprint arXiv:1802.04687, 2018.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K.,
Kravitz, J., Chen, S., Kalantidis, Y., Li, L.-J., Shamma,
D. A., et al. Visual genome: Connecting language and
vision using crowdsourced dense image annotations. In-
ternational Journal of Computer Vision, 123(1):32–73,
2017.

Lafferty, J., McCallum, A., and Pereira, F. C. Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data. 2001.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R.
Gated graph sequence neural networks. arXiv preprint
arXiv:1511.05493, 2015.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In European conference on
computer vision, pp. 740–755. Springer, 2014.

Louizos, C., Ullrich, K., and Welling, M. Bayesian compres-
sion for deep learning. In Advances in Neural Information
Processing Systems, pp. 3288–3298, 2017.

Mena, G., Belanger, D., Linderman, S., and Snoek, J. Learn-
ing latent permutations with gumbel-sinkhorn networks.
arXiv preprint arXiv:1802.08665, 2018.

Ng, Y. C., Colombo, N., and Silva, R. Bayesian semi-
supervised learning with graph gaussian processes. In
Advances in Neural Information Processing Systems, pp.
1683–1694, 2018.

Palm, R., Paquet, U., and Winther, O. Recurrent relational
networks. In Advances in Neural Information Processing
Systems, pp. 3368–3378, 2018.

Rissanen, J. Modeling by shortest data description. Auto-
matica, 14(5):465–471, 1978.

Modeling Trajectories for Probabilistic Graph Inference

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M.,
Pascanu, R., Battaglia, P., and Lillicrap, T. A simple neu-
ral network module for relational reasoning. In Advances
in neural information processing systems, pp. 4967–4976,
2017.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3):93–93, 2008.

Sha, F. and Pereira, F. Shallow parsing with conditional
random fields. In Proceedings of the 2003 Conference of
the North American Chapter of the Association for Com-
putational Linguistics on Human Language Technology-
Volume 1, pp. 134–141. Association for Computational
Linguistics, 2003.

Taskar, B., Guestrin, C., and Koller, D. Max-margin markov
networks. In Advances in neural information processing
systems, pp. 25–32, 2004.

Teney, D., Liu, L., and van Den Hengel, A. Graph-structured
representations for visual question answering. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1–9, 2017.

van den Oord, A., Vinyals, O., et al. Neural discrete repre-
sentation learning. In Advances in Neural Information
Processing Systems, pp. 6306–6315, 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Wang, X., Girshick, R., Gupta, A., and He, K. Non-local
neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 7794–
7803, 2018.

Wei, S.-E., Ramakrishna, V., Kanade, T., and Sheikh, Y.
Convolutional pose machines. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition,
pp. 4724–4732, 2016.

Xu, D., Zhu, Y., Choy, C. B., and Fei-Fei, L. Scene graph
generation by iterative message passing. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5410–5419, 2017.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

Yang, Z., Cohen, W. W., and Salakhutdinov, R. Revisiting
semi-supervised learning with graph embeddings. arXiv
preprint arXiv:1603.08861, 2016.

You, J., Ying, R., and Leskovec, J. Position-aware graph
neural networks. arXiv preprint arXiv:1906.04817, 2019.

Zhang, Y., Pal, S., Coates, M., and Ustebay, D. Bayesian
graph convolutional neural networks for semi-supervised
classification. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 5829–5836, 2019.

